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Expressions are obtained for calculating percolation characteristics of heterogeneous systems with the use 

of refined auxiliary relations in the entire range of their porosity (concentration of a disperse phase). 

To determine characteristics and describe the structure and properties of porous or composite materials 

use is usually made of models based on regular or random packings of monodisperse particles [1 ]. However, in so 

doing, percolation effects occurring in porous systems are often not taken into account, which is not always 

permissible (for instance, in the analysis of the porous structure of powder materials by the methods of water-air 

and mercury porometry). Problems described in percolation theory are solved, as a rule, by means of numerical 

experiments using concrete network models with a specified coordination number. This complicates the use of the 

obtained results for the analysis of the structure and properties of heterogeneous materials, since it is important 

to know the parameters of a structure with changing porosity, i.e., with variable coordination numbers of the 

particles constituting powder systems. In [2, 3 ] analytical expressions that are sufficiently convenient in practice 

are obtained for percolation characteristics of networks modeling powder systems. Below we describe these 

expressions as employed for calculating percolation characteristics of heterogeneous systems with the use of refined 

auxiliary relations in the entire range of their porosity (concentration of a disperse phase). 

For the problem of bonds and nodes correlations of the percolation threshold acr.b(n ) and the coordination 

number Z or the packing porosity /7 [acr.b = 1.5/Z and acr.n = 0.15/(1-/7) ] are known that have an error of 

5 -10% for numerical calculations for regular networks. A higher accuracy may be achieved by using the least- 

squares method: 

acr.b(n ) = Ab(n)/Z q- Bb(n) , (1) 

where Ab = 1.59, A n = 1.359, Bb -- -0.017, Bn = 0.08. 
In order to obtain expressions for heterogeneous systems, it is necessary to use general principles of the 

dependence of the behavior of the percolation characteristics on the share of the conductive bonds or nodes and 

the coordination number of model networks: 

1. Percolation thresholds on a model network in problems of bonds and nodes are described by a single 

linear relation (independent of its coordination number). 

2. The expression for the percolation probability (the bonding function) qb(Qn) of heterogeneous systems 

in terms of the share of the conductive bonds (nodes) in the generalized coordinates Za-Bb(n) does not depend 

on the coordination number of the model network. 
3. The ratio of the percolation thresholds (the difference between unity and the thresholds) to the roots of 

the equations (the difference between unity and these roots) obtained by the self-consistent field method in the 

problem of bonds (nodes) is a constant. 
4. The dependence of the conductance of the network a b on the generalized share of the conductive bonds 

[Z(a - B b) ] in the entire porosity range differs only by the scale relative to [ (1 - -Bb)Z-  A b ]. 
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5. The  dependence of the conductance of the network an on the share of the conductive nodes in the 

generalized coordinates (a -acr .n ) / (1 -acr .n )  in the entire porosity range does not depend on the coordination 

number  Z of the network. 

On the basis of the first two principles we obtain an auxil iary value of the share of the conductive bonds 

(nodes) aa.b(n) for calculation of the percolation probabili ty and the bonding function of heterogeneous systems. 

For this, we use simple cubic packing (Z = 6) and equate Ab(n) for Z and Z -- 6: 

aa.b(n) = Z [a - Bb(n) ] / 6  + Bb(n) �9 (2) 

The  last three  principles follow from an analysis of the expression for the conductance of three-dimensional  

heterogeneous sys tems in the problem of bonds (nodes) obtained by the self-consistent field method at a --, 1 (it 

corresponds to relations tangent  at the point a = 1 to those obtained from numerical  experiments) .  Thus,  for 

three-dimensional  sys tems we have 

a n (a) = 1 - (2Z - 2) (i  - a ) / ( Z  - 2 ) ,  (3) 

% (a) = (a - 2 / Z ) / ( 1  - 2 / Z ) .  (3a) 

Equating cr in expressions (3), (3a) to zero, we obtain the corresponding values of a(Crn.(b ) = 0): 

a (a n = 0) = 1 - (Z - 2 ) / ( 2 Z  - 2 ) ,  (4) 

a ( %  = O) = 2 / Z .  (4a) 

In [3 ] it is shown that the relation 

[a (or n = O) -- acr.n ] / (1 - acr.n ) = 0.43 + 0 .01,  (5) 

i.e., the dependence of the conductance on the coordination number,  is determined by  the quantity 1-acr.n. 

Substituting a(~n = O) from (5) into (4), we arrive at 

acr.n = 1 - (7 /4)  (Z - 2 ) / ( 2 Z  - 2) .  (6) 

From expression (6) we obtain acr.n values for regular packings that coincide within S~o with known values 

obtained from numerical  experiments  [1 ]. 

The  generalized value of aa.nl (corresponding to simple cubic packing) is determined from the relation 

(a - acr .n) / (1  - acr.n) = (1 - aa.nl)/(1 - acr.n ' Z = 6 ) "  

From the last expression and (6) we obtain 

aa.nl = 0.307 -- 0.693 (a -- acr.n ) (1 -- acr.n ) , (7) 

where acr.n is de termined by (1) or (6). 

Equating the ratio [ ( a - - B b ) Z - - A b ] / [ ( 1 - B b ) Z - A b ]  for arbi t rary Z and for Z = 6 and using the values of 

A b and B b de te rmined  earlier, we obtain the generalized aa.bl for calculation of the conductance of a powder system 

in the problem of bonds:  

aa.bl = 0.248 + 0.752Z [(a + 0.017) Z - 1 .59] / (1 .017Z - 1.59). (8) 

Figures 1 and 2 show the dependences of the conductance of three-dimensional  systems in the problems 

of bonds and  nodes in the generalized coordinates. 

Based on the foregoing and [2, 3 ], the percolation characteristics of three-dimensional  systems may  be 

written in the following form: 
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qb (a) 
Qn (a) = (tb(n) + 1 - 1/aa.b(n) )/(tb(n) + aa.b(n) -- 1) ; (9) 

Qb (a) = aq b (a) , qn (a) = aQn (a) ; (10) 

ab(n) (a) = Kb(n) (0.5lb(n)/aa.b(n) 1 + 1)/[1 + (aa.n(n) 1 -- acr.n(n), Z=6 )-1 ] ; (11) 

/a.b(n) 1 = [1 -- aa.b(n) I qb(n) (aa.b(n) 1 ) ] lb(n) bl / [1 + 

aa.b(n) 1 qb(n) (aa.b(n) 1) (lb(n) bl - -  1 )  ] ; (12) 

3 a4.b)/(1 aa.b)3 + 34a4.b (1 + 3aa.b) ] t b = 4aa. b [1 + (3aa. b + 4aa. b + -- (13) 

t n = t n (a) = t b (aa. b = 0.713aa. n ) ; (14) 

lbbl 
2 a ) / (1 )3 

= 4aa.b. 1 [1 + (6aa.b. 1 + 9aa.b. 1 + 29aa.b, 1 -- aa.b. 1 + 

139a4.b. 1 (1 + 6aa.b. 1 ) ] ; (15) 

/n.bl = /n.bl (a) = l b (aa.bl = 0.713aa.nl ) ,  (16) 

where Kb = 7/3; Kn = 2.443, and aa.b(n) and aa.b~n)l are calculated using expressions (2), (9), and (7), respectively. 

It should be noted that the last summands in (13) and (15) are refined, as compared to [3 ], by taking into 

account, for the degree of filling of the planes of a model cubic network, the auxiliary bonds with the initial node 

of the four first-order nodes (via 5 bonds) for six variants and the eight second-order nodes (via 6 bonds) for 

sixteen variants. 

The expressions for calculation of the percolation characteristics of two-dimensional systems may be 

generalized analogously. 

To adopt the described procedure for practice applications, it is necessary to relate the coordination number 

of model networks to the porosity H of analyzed materials by using its dependence on the averages of the 

coordination number of the particles (network) and the radius of interparticle contacts dc (it may be assumed equal 

to zero in some cases) for two- (H2) and three-dimensional (//3) media 

1 - H 2 = ~ / [ Z  (1 - 2h2/D ) tan (n/Z)  ] ,  (17) 

1 - H 3 = (Z - 2)2/[8 (Z 2 - 0.6Z - 1.76) (0.5 - hJD)3] ,  (18) 

where h2 = ho -0.25D2[arcsin(dc/D)+(dc/D)(1-2ho/D]/dc));h3 = ho-4ho(1.5D2-ho)/(3d2); h0 = [ D - ( D  2 

-d2)  0"5 ] /2 ,D is the mean diameter of the particles constituting the porous system. 

As an example, we consider a method for correcting the integral dependence of the distribution of the 

volume of the pores with respect to their neck sizes obtairned by mercury or gas-liquid porometry (by gas-aided 

displacement of a liquid from a sample saturated with it) Z Vi(ri). 
rmax,f 

Since the problem considered pertains to the bonding problem, we write the share of the pores filled with 

mercury (or freed of a liquid by a gas) in terms of the corresponding porosity: 

ai= H -  AHi, f /1-1, 1-1= ~ AHi,f(req,i), 
1 1 
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Fig. 1. Conductance in the problem of bonds versus the share of the 

conductive bonds in generalized coordinates. 

Fig. 2. Conductance in the problem of nodes versus the share of the 

conductive nodes in generalized coordinates. 

i 
/-/i,f = 17 -- Z A/'/i,f (req,i) , 

1 

where r = 2y cos O/P,  P is the pressure of mercury (a gas) in the i-th stage of the pressure rise. 

An algorithm of correction is as follows: 

1. The coordination number Z of the model network is determined by the porosity, 171 the size of 

interparticle contacts dc, and expression (18). 

2. The values of the bonding function Qbi[(a = (1-I - Hi, O / H  ] are calculated using expressions (9), (10), 

(13), and (2). 

3. For all values the share of the blocked pores Aa = a -Qb i (a )  is calculated. 

4. The porosity taken over blocked pores Ai.bl = H(1-Aai) is calculated. 

5. Using Hi, f and AHi. N values, the corrected porosity H i is calculated: H i = Hi, f --Af/i.bl. 
Since at Qi ~ ai, ai -" 1, the share of the blocked pores gradually decreases to zero with decrease in their 

size. However, for the portion of the coarsest particles corresponding to the percolation threshold (it makes up 

almost the one-fourth of the total porosity for a porosity of the material of about 50%) it may only be said that 

the pores have a size larger than req,i. It is pertinent to note that the widely accepted method of determination of 

the maximum pore sizes of permeable materials by emergence of the first bubbles of a gas passing through a material 

saturated with a liquid (see, e.g., [4 ]) cannot be considered accurate. Indeed, displacement of a liquid out of a 

material begins only at a gas pressure corresponding to the percolation threshold, i.e., to pores whose radius is 

considerable smaller than the maximum one. 

From the aforesaid it follows that it is desirable to use the methods of mercury and gas-liquid porometry 

in combination with stereologic studies of porous materials. 

In conclusion, a generalized percolation theory is proposed that allows calculation of the percolation char- 

acteristics of permeable materials in a wide range of their porosity. 
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